Fast Algorithms for Constructing Maximum Entropy Summary Trees
نویسندگان
چکیده
Karloff and Shirley recently proposed “summary trees” as a new way to visualize large rooted trees (Eurovis 2013) and gave algorithms for generating a maximum-entropy k-node summary tree of an input n-node rooted tree. However, the algorithm generating optimal summary trees was only pseudo-polynomial (and worked only for integral weights); the authors left open existence of a polynomial-time algorithm. In addition, the authors provided an additive approximation algorithm and a greedy heuristic, both working on real weights. This paper shows how to construct maximum entropy k-node summary trees in time O(kn+n logn) for real weights (indeed, as small as the time bound for the greedy heuristic given previously); how to speed up the approximation algorithm so that it runs in time O(n+ (k/ ) log(k/ )), and how to speed up the greedy algorithm so as to run in time O(kn+ n logn). Altogether, these results make summary trees a much more practical tool than before.
منابع مشابه
Computing Rooted and Unrooted Maximum Consistent Supertrees
A chief problem in phylogenetics and database theory is the computation of a maximum consistent tree from a set of rooted or unrooted trees. A standard input are triplets, rooted binary trees on three leaves, or quartets, unrooted binary trees on four leaves. We give exact algorithms constructing rooted and unrooted maximum consistent supertrees in time O(2nm log m) for a set of m triplets (qua...
متن کاملMaximum Entropy Summary Trees
Given a very large, node-weighted, rooted tree on, say, n nodes, if one has only enough space to display a knode summary of the tree, what is the most informative way to draw the tree? We define a type of weighted tree that we call a summary tree of the original tree that results from aggregating nodes of the original tree subject to certain constraints. We suggest that the best choice of which...
متن کاملBalanced Randomized Tree Splitting with Applications to Evolutionary Tree Constructions
We present a new technique called balanced randomized tree splitting. It is useful in constructing unknown trees recursively. By applying it we obtain two new results on efficient construction of evolutionary trees: a new upper time-bound on the problem of constructing an evolutionary tree from experiments, and a relatively fast approximation algorithm for the maximum agreement subtree problem ...
متن کاملTwo polynomial algorithms for special maximum matching constructing in trees
For an arbitrary tree we investigate the problems of constructing a maximum matching which minimizes or maximizes the cardinality of a maximum matching of the graph obtained from original one by its removal and present corresponding polynomial algorithms.
متن کاملConstructing Graceful Graphs with Caterpillars
A graceful labeling of a graph G of size n is an injective assignment of integers from {0, 1,..., n} to the vertices of G, such that when each edge of G has assigned a weight, given by the absolute dierence of the labels of its end vertices, the set of weights is {1, 2,..., n}. If a graceful labeling f of a bipartite graph G assigns the smaller labels to one of the two stable sets of G, then f ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014